Zellic

Audius Solana Programs

Smart Contract Security Assessment

November 21, 2022

Prepared for:
Ray Jacobson

Audius, Inc

Prepared by:
Filippo Cremonese and Jasraj Bedi

Zellic Inc.

Contents

About Zellic 2
1 Executive Summary 3
2 Introduction 5
21 About Audius Solana Programs 5
22 Methodology 5
2.3 SCOPE . . o v e 6
24 ProjectOverview Lo o 6
25 ProjectTimeline 7
3 Detailed Findings 8
3.1 Missing PDA validation leading to multiple transfers 8
3.2 Ambiguous format for signed messages 10
3.3 Unsafe account deletion method 12
3.4 Lack of parameters validation in InitRewardManager. 13
4 Discussion 14
41 Ownership changeprocess 14
42 Usage of constant strings instead of enums 14
43 Lackofdiscriminators. 14
4.4 The checks is_signer and owner should be consolidated 15

4.5 No account ownership enforced in rewards manager change manager

accountinstruction 15
5 Audit Results 16
51 Disclaimers. 16

'$- Zellic 1 Audius, Inc

About Zellic

Zellic was founded in 2020 by a team of blockchain specialists with more than a
decade of combined industry experience. We are leading experts in smart contracts
and Web3 development, cryptography, web security, and reverse engineering. Be-
fore Zellic, we founded perfect blue, the top competitive hacking team in the world.
Since then, our team has won countless cybersecurity contests and blockchain secu-
rity events.

Zellic aims to treat clients on a case-by-case basis and to consider their individual,
unique concerns and business needs. Our goal is to see the long-term success of
our partners rather than simply provide a list of present security issues. Similarly, we
strive to adapt to our partners’ timelines and to be as available as possible. To keep
up with our latest endeavors and research, check out our website zellic.io or follow
@zellic_io on Twitter. If you are interested in partnering with Zellic, please email us at
hello@zellic.io or contact us on Telegram at https://t.me/zellic_io.

ZA Zellic 2 Audius, Inc

https://perfect.blue
https://zellic.io
https://twitter.com/zellic_io
mailto:hello@zellic.io
https://t.me/zellic_io

1 Executive Summary

Zellic conducted an audit for Audius, Inc from October 10th to October 14th, 2022.

Our general overview of the code is that it was very well-organized and structured.
Tests are included for the majority of the functions. The documentation was adequate,
although it could be improved. The code was easy to comprehend, and in most cases,
intuitive.

We applaud Audius, Inc for their diligence in maintaining high code quality stan-
dards in the development of Audius Solana Programs as well as their responsiveness
demonstrated while the audit was ongoing.

Zellic thoroughly reviewed the Audius Solana Programs codebase to find protocol-
breaking bugs as defined by the documentation and to find any technical issues out-
lined in the Methodology section (2.2) of this document.

Specifically, taking into account Audius Solana Programs'’s threat model, we focused
heavily on issues that would break core invariants such as requiring signatures from
the appropriate signers to redeem and transfer reward tokens as well as to manage
groups of trusted signers.

During our assessment on the scoped Audius Solana Programs contracts, we discov-
ered four findings. One finding was of critical severity. Of the remaining findings, one
was of low severity, and the remaining findings were informational in nature.

Additionally, Zellic recorded its notes and observations from the audit for Audius, Inc’s
benefit in the Discussion section (4) at the end of the document.

1o Zellic 3 Audius, Inc

Impact Level Count

Breakdown of Finding Impacts

Critical 1
High 0]
Medium 0
Low 1
Informational 2

formational

'.'f} Zellic

Audius, Inc

2 Introduction

2.1 About Audius Solana Programs

Audius Solana Programs is a decentralized, community-owned and artist-controlled
music-sharing protocol. Audius provides a blockchain-based alternative to existing
streaming platforms to help artists publish and monetize their work and distribute it
directly to fans. The mission of the project is to give everyone the freedom to share,
monetize, and listen to any audio.

2.2 Methodology

During a security assessment, Zellic works through standard phases of security audit-
ing including both automated testing and manual review. These processes can vary
significantly per engagement, but the majority of the time is spent on a thorough man-
ual review of the entire scope.

Alongside a variety of open-source tools and analyzers used on an as-needed basis,
Zellic focuses primarily on the following classes of security and reliability issues:

Basic coding mistakes. Many critical vulnerabilities in the past have been caused by
simple, surface-level mistakes that could have easily been caught ahead of time by
code review. We analyze the scoped smart contract code using automated tools to
quickly sieve out and catch these shallow bugs. Depending on the engagement, we
may also employ sophisticated analyzers such as model checkers, theorem provers,
fuzzers, and so forth as necessary. We also perform a cursory review of the code to
familiarize ourselves with the contracts.

Business logic errors. Business logic is the heart of any smart contract application.
We manually review the contract logic to ensure that the code implements the ex-
pected functionality as specified in the platform’s design documents. We also thor-
oughly examine the specifications and designs themselves for inconsistencies, flaws,
and vulnerabilities. This involves use cases that open the opportunity for abuse, such
as flawed tokenomics or share pricing, arbitrage opportunities, and so forth.

Complex integration risks. Several high-profile exploits have not been the result of
any bug within the contract itself; rather, they are an unintended consequence of the
contract’s interaction with the broader DeFi ecosystem. We perform a meticulous
review of all of the contract’s possible external interactions and summarize the asso-
ciated risks: for example, flash loan attacks, oracle price manipulation, MEV/sandwich
attacks, and so forth.

1o Zellic 5 Audius, Inc

Code maturity. We review for possible improvements in the codebase in general. We
look for violations of industry best practices and guidelines and code quality stan-
dards. We also provide suggestions for possible optimizations, such as gas optimiza-
tion, upgradeability weaknesses, centralization risks, and so forth.

For each finding, Zellic assigns it an impact rating based on its severity and likelihood.
There is no hard-and-fast formula for calculating a finding’s impact; we assign it on
a case-by-case basis based on our professional judgment and experience. As one
would expect, both the severity and likelihood of an issue affect its impact; for in-
stance, a highly severe issue’s impact may be attenuated by a very low likelihood. We
assign the following impact ratings (ordered by importance): Critical, High, Medium,
Low, and Informational.

Similarly, Zellic organizes its reports such that the most important findings come first
in the document rather than being ordered on impact alone. Thus, we may sometimes
emphasize an “Informational” finding higher than a “Low” finding. The key distinction
is that although certain findings may have the same impact rating, their importance
may differ. This varies based on numerous soft factors, such as our clients’ threat
models, their business needs, their project timelines, and so forth. We aim to provide
useful and actionable advice to our partners that consider their long-term goals rather
than simply provide a list of security issues at present.

2.3 Scope
The engagement involved a review of the following targets:

Audius Solana Programs Contracts
Repository https://github.com/AudiusProject/audius-protocol
Versions 9b82a8c962aa052Uc2db2e73¢c5585UbuUc7200c9d

Programs e claimable-tokens
e reward-manager

Type Rust

Platform Solana

2.4 Project Overview

Zellic was contracted to perform a security assessment with two consultants for a
total of two person-weeks. The assessment was conducted over the course of one
calendar week.

,,, Zellic 6 Audius, Inc

https://github.com/AudiusProject/audius-protocol

Contact Information

The following project managers were associated with the engagement:
Jasraj Bedi, Co-founder Stephen Tong, Co-founder
jazzy@zellic.io stephen@zellic.io

The following consultants were engaged to conduct the assessment:

Filippo Cremonese, Engineer Jasraj Bedi, Co-founder, Engineer
fcremoa@zellic.io jazzy@zellic.io

2.5 Project Timeline
The key dates of the engagement are detailed below.

October 10, 2022 Start of primary review period
October 14, 2022 End of primary review period
November 21,2022 Final report delivery

;;', Zellic 7 Audius, Inc

mailto:jazzy@zellic.io
mailto:stephen@zellic.io
mailto:fcremo@zellic.io
mailto:jazzy@zellic.io

3 Detailed Findings

3.1 Missing PDA validation leading to multiple transfers

e Target: Rewards Manager

e Category: Coding Mistakes e Severity: Critical
e Likelihood: High ¢ Impact: Critical
Description

Rewards are redeemed using a two-step process. First, signed messages are submit-
ted and stored on-chain in an account of type VerifiedMessages. When the required
amount of signed messages has been submitted, the EvaluateAttestations instruction
is invoked to process the transfer. The instruction performs a number of checks on the
provided accounts and then performs the token transfer to the destination account.
In order to avoid a single transfer being repeated multiple times, a PDA is created (tr
ansfer_account_info), marking the transfer as completed. The PDA is unique for the
transfer since the address is derived from the details of the transfer, including a unique
ID. In addition, the account containing the VerifiedMessages is deleted by zeroing its
lamports. Both these measures are flawed and can be bypassed.

The transfer_account_info account is not checked to be the intended PDA. An at-
tacker can supply any signer account as an input to the transaction, and the account
will be created successfully. This is because any signer account can be passed to the
create_account system instruction, even if the invoke_signed function is used to per-
form an invocation with signer seeds for the intended PDA. The signer seeds will just
be ignored as they do not correspond to any account in the subtransaction.

It is also possible to reuse the VerifiedMessages account, despite it having zero lam-
ports, by referencing it in multiple instructions within the same transaction. This spe-
cific issue is discussed more in detail in finding 3.3.

Impact

Itis possible to redeem rewards multiple times. We confirmed this issue by modifying
an existing test.

Recommendations

Ensure that the transfer_account_info account matches the expected PDA. Properly
invalidate the data stored in the VerifiedMessages accounts so that it cannot be reused

/,. Zellic 8 Audius, Inc

even within the same transaction.

Remediation

The Audius team was alerted of this issue while the audit was ongoing. The issue
was acknowledged within 10 minutes, and a remediation patch was suggested within
40 minutes. The patch was quickly deployed after review from both Zellic and Au-
dius engineers to ensure a complete fix to the issue. The complete timeline of events
follows (times in UTC, October 15th):

® 17:52 Audius is informed of the issue
e 18:02 Audius acknowledges the issue
e 18:31 Audius proposes a remediation

e 18:35 Zellic confirms that proposed remediation patches the issue, suggesting
additional changes to invalidate VerifiedMessages accounts

e -21:45 Audius finalizes remediation commits, including suggested additional changes
e -22:00 Zellic confirms that remediation patches the issue

e -22:00 Audius deploys and tests patch on testnet

e 23:31 Audius deploys patch on mainnet

1o Zellic 9 Audius, Inc

3.2 Ambiguous format for signed messages

e Target: Rewards Manager
e Category: Code Maturity e Severity: Informational
e Likelihood: N/A ¢ Impact: Informational

Description

Verified messages are serialized as the concatenation of multiple fields separated by
an underscore:

// Valid senders message

let valid_message = [

transfer_data.eth_recipient.as_ref(),
b(l._” ,
transfer_data.amount.to_le_bytes().as_ref(),
b(l_” ,
transfer_data.id.as_ref(),
b(l_” ,
bot_oracle.eth_address.as_ref(),
]

.concat();

This format is inherently prone to ambiguities. Consider the example of the following
amount and id variations (other fields left out for simplicity):

amount: 123
id: _myid
message: 123__myid

amount: 123

id: myid

message: 123__myid

The same message can be obtained by composing different amounts and ids.

Impact

This issue can potentially be exploited to submit manipulated values to invocations of
process_evaluate_attestations. The Audius team claimed amounts and ids containing
underscores (0x5f bytes) cannot be generated by the relevant off-chain programs;

;;', Zellic 10 Audius, Inc

therefore, the issue is not exploitable in practice. For this reason this potentially critical
issue is reported as informational.

Recommendations

Even though the issue might not be exploitable at the time of this security audit, we
strongly advise to review the message format to make ambiguities impossible in or-
der to to harden the code and avoid being exposed to a risk of a critical issue. One
remediation option would be to adopt a serialization format where the various fields
have a fixed length. Another more flexible (but more complex and bug-prone) option
would be to adopt a tag-length-value encoding (or just length-value).

Remediation

The Audius team acknowledged this finding. No change to the codebase was deemed
to be immediately required.

/,. Zellic 1 Audius, Inc

3.3 Unsafe account deletion method

e Target: Rewards Manager

e Category: Coding Mistakes e Severity: Low
e Likelihood: N/A ¢ Impact: Low
Description

The EvaluateAttestations instruction processes an account of type VerifiedMessages
containing signed assertions authorizing the transfer of a given amount of tokens to a
specific account. Towards the end of the instruction, the VerifiedMessages account is
deleted by zeroing its lamports.

This account deletion method is unsafe and prone to abuse. The reason is that account
deletion does not happen immediately after an instruction is finished processing, and
a zero-lamports account is usable by other instructions within the same transaction.

Impact

It is possible to reuse a VerifiedMessages account after an EvaluateAttestations in-
struction has been processed, despite it having zero lamports, by referencing the same
account in multiple instructions within the one transaction. This issue was part of the
exploit for issue 3.1.

Recommendations

Invalidate or immediately delete verifiedMessages.

Invalidating the account can be done by zeroing the version field, thus making unpac
king the account fail.

Truly and fully deleting the account is not possible; however, it is possible to achieve
an equivalent effect by zeroing the account lamports, resizing the account to zero, and
transferring the account ownership to the system program.

Remediation

The Audius team was alerted of this issue while the audit was ongoing, together with
issue 3.1. The Audius team quickly applied a remediation that invalidates the account,
making unpack fail.

,,, Zellic 12 Audius, Inc

3.4 Lack of parameters validation in InitRewardManager

e Target: Rewards Manager

e Category: Code Maturity e Severity: Informational
e Likelihood: N/A e Impact: Informational
Description

The processor for the InitRewardManager is not performing some checks that would
prevent misuse of the program outside of the intended functionality.

Specifically, the min_votes parameter is not required to be greater than zero. It would
be possible to initialize a RewardManager that requires zero signers. In addition, the
mint_info account is not constrained to be the mint of one specific token.

Impact

This is an informational finding, and there is no direct security impact. The off-chain
programs invoking InitRewardManager are responsible for calling it with appropriate
parameters and could potentially invoke it with invalid parameters by mistake, creat-
ing a RewardManager that requires no signers.

Recommendations

Even though this issue does not pose a direct security vulnerability, we recommend to
be as restrictive as possible in the inputs accepted by on-chain programs as a hard-
ening measure.

Remediation

The Audius team acknowledged this finding. No change to the codebase was deemed
to be immediately required.

.5,'. Zellic 13 Audius, Inc

4 Discussion

The purpose of this section is to document miscellaneous observations that we made
during the assessment.

4.1 Ownership change process

The reward manager ChangeManagerAccount instruction allows to change the owner
associated with a reward manager. The ownership change process does not require
to prove that the new owner account is valid and that the associated private key is
known (or that a program that can sign for it exists, in the case of a PDA). A two-step
process is quite common to ensure protection against mistaken ownership changes:
First, an ownership change is requested, and the to-be admin is stored alongside the
old one. A second instruction is then invoked with the second admin as a signer,
confirming the ownership transfer and replacing the former admin with the new one.
Such a design change could be a minor improvement to Audius design.

4.2 Usage of constant strings instead of enums

The reward manager validate_secp_add_delete_sender function takes a message_pref
ix string reference, which in practice is always one of the two constant values DELETE_
SENDER_MESSAGE_PREFIX or ADD_SENDER_MESSAGE_PREFIX. A very minor improvement to
be considered would be to switch from accepting a string reference to accepting an
enum implementing the From and Into traits to aid in converting to and from a string
form.

4.3 Lack of discriminators

Solana accounts are, by default, untyped byte buffers with some associated metadata.
It is up to the individual programs to discern between the various types of data that
can be stored in an account. Audius determines the type of an account by looking
at the size of the account’s data. Since every type in Audius programs differs in size,
this is possible and not ambiguous. However, this prevents Audius from introducing
account types with the same size in a future update.

The most common and general approach, also adopted by Anchor, the most common
Solana framework, is to include a discriminator field in the account data, containing a
value that is unique for each type of account. This approach allows to introduce new

/,. Zellic 14 Audius, Inc

types (even with identical sizes) without the risk of type confusion.

Audius is not vulnerable to account confusion in the version under review. We note
that extreme care by the development team must be taken not to introduce new ac-
count types with size conflicting with any other existing type in the future.

4.4 The checks is_signer and owner should be consolidated

In multiple places in the eth registry are seperate is_signer and owner checks per-
formed on the Signer Group. The Signer Group does have the SignerGroup:: check_
owner(...) method, which does both already with the correct error return variants.
These scattered is_signer and owner checks should be consolidated into check_owner
calls.

4.5 Noaccount ownership enforced in rewards manager change
manager account instruction

The Solana VM wiill enforce the property that a program must be the owner account
it has performed a write to. This property is commonly leveraged to avoid having to
perform an explicit ownership check inside the contract code itself as the Solana VM
should enforce this.

This is actually not entirely true. This property is only enforced if there is a change to
the account data field. So, if the Solana program writes the same data that already
exists in the account on top of the existing data, then the Solana runtime will not re-
quire the program to have ownership of the account, since it’s data before and after
the program executes hasn’t changed.

This is typically an issue if the account being written to, or one of the arguments passed
in via the instruction, is also being used to perform a write to another important ac-
count. In this case, that is not true; therefore, this did not rise to the level of a security
issue. We wanted to note, though, that the following comment found in the code does
not always hold for the reason explained above:

// Note: We do not have to assert that we own the ‘reward_manager' account

// as we would normally, because in writing to it the runtime
// enforces ownership

;;', Zellic 15 Audius, Inc

5 Audit Results

During our audit, we discovered four findings. Of these, one was of critical severity,
one was low risk, and two were suggestions (informational). Audius, Inc acknowl-
edged all findings and implemented fixes for the critical and low severity findings.

At the time of our audit, the code was deployed to mainnet Solana. The Audius team
was informed of the critical finding as soon as Zellic confirmed exploitability by per-
fecting a proof of concept. The Audius team promptly acknowledged, triaged, and
remediated the issue, minimizing the risk of the issue being exploited.

5.1 Disclaimers

This assessment does not provide any warranties about finding all possible issues
within its scope; in other words, the evaluation results do not guarantee the absence
of any subsequent issues. Zellic, of course, also cannot make guarantees about any
additional code added to the assessed project after the audit version of our assess-
ment. Furthermore, because a single assessment can never be considered compre-
hensive, we always recommend multiple independent assessments paired with a bug
bounty program.

For each finding, Zellic provides a recommended solution. All code in these recom-
mendations are intended to convey how an issue may be resolved (i.e., the idea), but
they may not be tested or functional code.

Finally, the contents of this assessment report are for informational purposes only;
do not construe any information in this report as legal, tax, investment, or financial
advice. Nothing contained in this report constitutes a solicitation or endorsement of
a project by Zellic.

,,, Zellic 16 Audius, Inc

	About Zellic
	Executive Summary
	Introduction
	About Audius Solana Programs
	Methodology
	Scope
	Project Overview
	Project Timeline

	Detailed Findings
	Missing PDA validation leading to multiple transfers
	Ambiguous format for signed messages
	Unsafe account deletion method
	Lack of parameters validation in InitRewardManager

	Discussion
	Ownership change process
	Usage of constant strings instead of enums
	Lack of discriminators
	The checks is_signer and owner should be consolidated
	No account ownership enforced in rewards manager change manager account instruction

	Audit Results
	Disclaimers

