
Audius

Smart Contract Security Assessment

October 11, 2022

Prepared for:

Raymond Jacobson and Roneil Rumburg

Tiki Labs Inc.

Prepared by:

Ayaz Mammadov and Vlad Toie

Zellic Inc.

Contents

About Zellic 2

1 Executive Summary 3

2 Introduction 5

2.1 About Audius . 5

2.2 Methodology . 5

2.3 Scope . 7

2.4 Project Overview . 7

2.5 Project Timeline . 8

3 Detailed Findings 9

3.1 Voting can potentially be influenced via restaking 9

3.2 Initialize check is missing from some functions 12

3.3 Stake contract address should not change once set 14

3.4 Unused allowance . 15

3.5 Inconsistent usage of SafeMath . 16

3.6 Governance should be transferred in two steps 17

4 Discussion 19

4.1 Gas inefficiency can result in prohibitively expensive gas costs 19

5 Audit Results 20

5.1 Disclaimers . 20

Zellic 1 Tiki Labs Inc.

About Zellic

Zellic was founded in 2020 by a team of blockchain specialists with more than a
decade of combined industry experience. We are leading experts in smart contracts
and Web3 development, cryptography, web security, and reverse engineering. Be-
fore Zellic, we founded perfect blue, the top competitive hacking team in the world.
Since then, our team has won countless cybersecurity contests and blockchain secu-
rity events.

Zellic aims to treat clients on a case-by-case basis and to consider their individual,
unique concerns and business needs. Our goal is to see the long-term success of
our partners rather than simply provide a list of present security issues. Similarly, we
strive to adapt to our partners’ timelines and to be as available as possible. To keep
up with our latest endeavors and research, check out our website zellic.io or follow
@zellic_io on Twitter. If you are interested in partnering with Zellic, please email us at
hello@zellic.io or contact us on Telegram at https://t.me/zellic_io.

Zellic 2 Tiki Labs Inc.

https://perfect.blue
https://zellic.io
https://twitter.com/zellic_io
mailto:hello@zellic.io
https://t.me/zellic_io

1 Executive Summary

Zellic conducted an audit for Tiki Labs Inc. from September 19th to October 7th, 2022.

Our general overview of the code is that it was very well-organized and structured.
The code coverage is high, and tests are included for themajority of the functions. The
documentation was adequate, although it could be improved. The code was easy to
comprehend, and in most cases, intuitive.

We applaud Tiki Labs Inc. for their attention to detail and diligence in maintaining
incredibly high code quality standards in the development of Audius.

Zellic thoroughly reviewed the Audius codebase to find protocol-breaking bugs as
defined by the documentation and to find any technical issues outlined in theMethod-
ology section (2.2) of this document.

Specifically, taking into account Audius’s threat model, we focused heavily on issues
that would break core invariants such as the Governance proposals, both in terms of
user interaction with them and in the way they execute. Moreover, we paid special
attention to the way the protocol staking happens, such that all the contracts that are
supposed to be able to stake can do so in a seamlessmanner and that the stakeholders
are always secured.

During our assessment on the scoped Audius contracts, we discovered six findings.
Of the six findings, one was of high severity, three of medium severity, one of low
severity, and the remaining findings were informational in nature.

Additionally, Zellic recorded its notes and observations from the audit for Tiki Labs
Inc.’s benefit in the Discussion section (4) at the end of the document.

Zellic 3 Tiki Labs Inc.

Breakdown of Finding Impacts

Impact Level Count

Critical 0

High 1

Medium 3

Low 1

Informational 1

High

Medium

Low

Informational

Zellic 4 Tiki Labs Inc.

2 Introduction

2.1 About Audius

Audius focuses on the sector of music streaming services and gives monetary power
and ownership back to artists and creators. With the support of blockchain and de-
centralization, Audius represents a platform for streaming and sharingmusic that aims
to change the way fans and music creators interact, making sure to protect music
ownership and return it to creators.

2.2 Methodology

During a security assessment, Zellic works through standard phases of security audit-
ing including both automated testing and manual review. These processes can vary
significantly per engagement, but themajority of the time is spent on a thoroughman-
ual review of the entire scope.

Alongside a variety of open-source tools and analyzers used on an as-needed basis,
Zellic focuses primarily on the following classes of security and reliability issues:

Basic coding mistakes. Many critical vulnerabilities in the past have been caused by
simple, surface-level mistakes that could have easily been caught ahead of time by
code review. We analyze the scoped smart contract code using automated tools to
quickly sieve out and catch these shallow bugs. Depending on the engagement, we
may also employ sophisticated analyzers such as model checkers, theorem provers,
fuzzers, and so forth as necessary. We also perform a cursory review of the code to
familiarize ourselves with the contracts.

Business logic errors. Business logic is the heart of any smart contract application.
We manually review the contract logic to ensure that the code implements the ex-
pected functionality as specified in the platform’s design documents. We also thor-
oughly examine the specifications and designs themselves for inconsistencies, flaws,
and vulnerabilities. This involves use cases that open the opportunity for abuse, such
as flawed tokenomics or share pricing, arbitrage opportunities, and so forth.

Complex integration risks. Several high-profile exploits have not been the result of
any bug within the contract itself; rather, they are an unintended consequence of the
contract’s interaction with the broader DeFi ecosystem. We perform a meticulous
review of all of the contract’s possible external interactions and summarize the asso-
ciated risks: for example, flash loan attacks, oracle pricemanipulation, MEV/sandwich
attacks, and so forth.

Zellic 5 Tiki Labs Inc.

Codematurity. We review for possible improvements in the codebase in general. We
look for violations of industry best practices and guidelines and code quality stan-
dards. We also provide suggestions for possible optimizations, such as gas optimiza-
tion, upgradeability weaknesses, centralization risks, and so forth.

For each finding, Zellic assigns it an impact rating based on its severity and likelihood.
There is no hard-and-fast formula for calculating a finding’s impact; we assign it on
a case-by-case basis based on our professional judgment and experience. As one
would expect, both the severity and likelihood of an issue affect its impact; for in-
stance, a highly severe issue’s impact may be attenuated by a very low likelihood. We
assign the following impact ratings (ordered by importance): Critical, High, Medium,
Low, and Informational.

Similarly, Zellic organizes its reports such that the most important findings come first
in the document rather than being ordered on impact alone. Thus, wemay sometimes
emphasize an “Informational” finding higher than a “Low” finding. The key distinction
is that although certain findings may have the same impact rating, their importance
may differ. This varies based on numerous soft factors, such as our clients’ threat
models, their business needs, their project timelines, and so forth. We aim to provide
useful and actionable advice to our partners that consider their long-term goals rather
than simply provide a list of security issues at present.

Zellic 6 Tiki Labs Inc.

2.3 Scope

The engagement involved a review of the following targets:

Audius Contracts

Repository https://github.com/AudiusProject/audius-protocol

Versions bda973856efc8b9144606d7952ea6a59e0d2bcca

Programs • AudiusAdminUpgradeabilityProxy.sol
• WormholeClient.sol
• erc20/AudiusToken.sol
• TrustedNotifierManager.sol
• ServiceTypeManager.sol
• IWormhole.sol
• DelegateManagerV2.sol
• Migrations.sol
• Governance.sol
• DelegateManager.sol
• GovernanceV2.sol
• InitializableV2.sol
• registry/Registry.sol
• ServiceProviderFactory.sol
• EthRewardsManager.sol
• ClaimsManager.sol
• Staking.sol

Type Solidity

Platform EVM-compatible

2.4 Project Overview

Zellic was contracted to perform a security assessment with two consultants for a
total of three person-weeks. The assessment was conducted over the course of two
calendar weeks.

Contact Information

The following project managers were associated with the engagement:

Zellic 7 Tiki Labs Inc.

https://github.com/AudiusProject/audius-protocol

Jasraj Bedi, Co-founder
jazzy@zellic.io

Stephen Tong, Co-founder
stephen@zellic.io

The following consultants were engaged to conduct the assessment:

Ayaz Mammadov, Engineer
ayaz@zellic.io

Vlad Toie, Engineer
vlad@zellic.io

2.5 Project Timeline

The key dates of the engagement are detailed below.

September 19, 2022 Start of primary review period

October 7, 2022 End of primary review period

Zellic 8 Tiki Labs Inc.

mailto:jazzy@zellic.io
mailto:stephen@zellic.io
mailto:ayaz@zellic.io
mailto:vlad@zellic.io

3 Detailed Findings

3.1 Voting can potentially be influenced via restaking

• Target: GovernanceV2
• Category: Business Logic
• Likelihood: Low

• Severity: High
• Impact: High

Description

Currently, the magnitude of a vote is determined when it is submitted, based on the
total stake of the user that submits the vote.

function submitVote(uint256 _proposalId, Vote _vote) external {
/) ...))

address voter = msg.sender;

/) ...))

/) Require voter has non-zero total active stake
uint256 voterActiveStake = _calculateAddressActiveStake(voter);
require(

voterActiveStake > 0,
“Governance: Voter must be address with non-zero total active

stake.”
);

/) Record vote
proposals[_proposalId].votes[voter] = _vote;

/) Record voteMagnitude for voter
proposals[_proposalId].voteMagnitudes[voter] = voterActiveStake;

/) ...))
}

function _calculateAddressActiveStake(address _address)
private view returns (uint256) {

Zellic 9 Tiki Labs Inc.

ServiceProviderFactory spFactory
= ServiceProviderFactory(serviceProviderFactoryAddress);
DelegateManager delegateManager
= DelegateManager(delegateManagerAddress);

/) Amount directly staked by address, if any, in
ServiceProviderFactory
(uint256 directDeployerStake,,,,,)
= spFactory.getServiceProviderDetails(_address);

/) Amount of pending decreasedStakeRequest for address, if any, in
ServiceProviderFactory
(uint256 lockedDeployerStake,)
= spFactory.getPendingDecreaseStakeRequest(_address);
/) active deployer stake = (direct deployer stake - locked deployer
stake)
uint256 activeDeployerStake
= directDeployerStake.sub(lockedDeployerStake);

/) Total amount delegated by address, if any, in DelegateManager
uint256 totalDelegatorStake
= delegateManager.getTotalDelegatorStake(_address);
/) Amount of pending undelegateRequest for address, if any, in
DelegateManager
(,uint256 lockedDelegatorStake,)
= delegateManager.getPendingUndelegateRequest(_address);
/) active delegator stake = (total delegator stake - locked delegator
stake)
uint256 activeDelegatorStake
= totalDelegatorStake.sub(lockedDelegatorStake);

/) activeStake = (activeDeployerStake + activeDelegatorStake)
uint256 activeStake = activeDeployerStake.add(activeDelegatorStake);

return activeStake;
}

Impact

As currently designed, there exists no checks on whether the staking/unstaking lock-
ing period is greater than the voting period. Imagine the following scenario:

Zellic 10 Tiki Labs Inc.

1. User A votes “YES” on a proposal, then unstakes their share and transfers it to
user B.

2. User B stakes, then votes “YES” on the same proposal, effectively pumping the
voting weight.

3. The process could repeat over and over, as long as the staking/unstaking locking
periods fit in the voting period of the proposal.

Recommendations

Asdiscussedwith theAudius team,wedetermined that currently the contracts are se-
cure, since the staking lockup period is greater than the voting period. This means that
despite the fact that theoretically the attack may be possible under specific circum-
stances (e.g., locking period of staking is way less than the voting period of proposal),
it is impossible to perform it as per the current state of the contracts.

The fix, as proposed by the Audius team, would be to enforce that the unstake period
is always greater than the voting period of a proposal.

Remediation

The issue has been addressed in pull request 4358.

Zellic 11 Tiki Labs Inc.

https://github.com/AudiusProject/audius-protocol/pull/4358

3.2 Initialize check is missing from some functions

• Target: DelegateManager(V2), WormholeClient
• Category: Coding Mistakes
• Likelihood: Medium

• Severity: Medium
• Impact: Medium

Description

The _requireIsInitialized function is available in contracts that inherit the Initializ
ableV2 contract and is used to ensure that the child contract has been initialized before
performing any other function call. Currently, the cancelRemoveDelegatorRequest in De
legateManagerV2 and DelegateManager and transferTokens in WormholeClientmiss this
important check.

Impact

There are no direct security implications of these instances of omitting the _requireIs
Initialized check; however, the functions that should implement it and currently do
not would revert.

Recommendations

In order to keep a consistent code design and follow best practices over all the con-
tracts and their functions, we recommend adding the _requireIsInitialized function
call in the two functions mentioned above.

/) DelegateManagerV2.sol, DelegateManager.sol

function cancelRemoveDelegatorRequest(address _serviceProvider,
address _delegator) external {
_requireIsInitialized();

require(
msg.sender =) _serviceProvider |) msg.sender =) governanceAddress,
ERROR_ONLY_SP_GOVERNANCE

);
require(

removeDelegatorRequests[_serviceProvider][_delegator] !) 0,
“DelegateManager: No pending request”

);
/) Reset lockup expiry
removeDelegatorRequests[_serviceProvider][_delegator] = 0;

Zellic 12 Tiki Labs Inc.

emit RemoveDelegatorRequestCancelled(_serviceProvider, _delegator);
}

/) WormholeClient.sol

function transferTokens(
address from,
uint256 amount,
uint16 recipientChain,
bytes32 recipient,
uint256 arbiterFee,
uint deadline,
uint8 v,
bytes32 r,
bytes32 s

) public {

_requireIsInitialized();
/) ...))

Remediation

The issues have been addressed in pull request 4360.

Zellic 13 Tiki Labs Inc.

https://github.com/AudiusProject/audius-protocol/pull/4360

3.3 Stake contract address should not change once set

• Target: Project-wide

• Category: Business Logic
• Likelihood: N/A

• Severity: Medium
• Impact: Medium

Description

Currently, the address of the staking contract is stored in a variable called stakingAd
dress and can be set via the setStakingAddress function, an action that can only be
performed by the governanceAddress. There is no check put in place, however, on
whether the stakingAddress has been previously set or not.

Impact

Changing the staking address after users have already interactedwith it may result in a
significant confusion between the user and the contracts they are supposed to interact
with. This is mainly because the accountsmapping, which stores the amounts staked
by each user, would not reflect what the user has staked in the initial Staking contract.

Recommendations

We strongly recommend that once set, the stakingAddress should not be changeable.

function setStakingAddress(address _stakingAddress) external {
_requireIsInitialized();

require(stakingAddress =) address(0), ERROR_STAKING_ALREADY_SET);
require(msg.sender =) governanceAddress, ERROR_ONLY_GOVERNANCE);
stakingAddress = _stakingAddress;
emit StakingAddressUpdated(_stakingAddress);

}

Remediation

The issues have been addressed in pull request 4362.

Zellic 14 Tiki Labs Inc.

https://github.com/AudiusProject/audius-protocol/pull/4362/commits

3.4 Unused allowance

• Target: ClaimsManager

• Category: Coding Mistakes
• Likelihood: Medium

• Severity: Medium
• Impact: Medium

Description

The initiateRound functions approves a transfer; however, this allowance is not used
by the safeTransfer.

function initiateRound() external {
...))
audiusToken.mint(address(this), recurringCommunityFundingAmount);

/) Approve transfer to community pool address
audiusToken.approve(communityPoolAddress,
recurringCommunityFundingAmount);

/) Transfer to community pool address
ERC20(address(audiusToken)).safeTransfer(communityPoolAddress,
recurringCommunityFundingAmount);
...))

Impact

This allows communityPoolAddress to receive twice the allotted claims from the claim
sManager. Currently this does not pose an active security issue as EthRewardsManager
is only managed by governance; however, if the communityPoolAddress changed, this
could result in a more severe vulnerability.

Recommendations

Remove the approval, or use safeTransferFrom instead of safeTransfer.

Remediation

The issue has been addressed in pull request 4359.

Zellic 15 Tiki Labs Inc.

https://github.com/AudiusProject/audius-protocol/pull/4359

3.5 Inconsistent usage of SafeMath

• Target: Project-wide

• Category: Coding Mistakes
• Likelihood: Low

• Severity: Low
• Impact: Low

Description

Solidity version 0.5 does not have inbuilt overflow or underflow protections. As a
consequence of this, SafeMath should be used in areas where overflow or underflow
are not the intended behavior, such that the operations revert safely. As an example,
underflow protection should be implemented in the function below:

function _removeFromInProgressProposals(uint256 _proposalId) internal {
...))
inProgressProposals[index]
= inProgressProposals[inProgressProposals.length - 1];
inProgressProposals.pop();

}

Impact

In the areas affected, we only noted reverts; however, future commits could change
the behaviour of certain affected functions, leading to more severe vulnerabilities.

Recommendations

Use SafeMath wherever overflow is not intended behavior.

Remediation

The issue has been fixed in pull request 4361.

Zellic 16 Tiki Labs Inc.

https://github.com/AudiusProject/audius-protocol/pull/4361

3.6 Governance should be transferred in two steps

• Target: Project-wide

• Category: Business Logic
• Likelihood: N/A

• Severity: Informational
• Impact: N/A

Description

The governance plays a fundamental role in the logic of all the contracts. It is important
that whenever there might occur a transfer in the governance ownership, this transfer
happens in two steps.

Impact

Currently, the contracts implement a simple transfer of ownership, which is prone to
human error. For this reason, a wrong address may be introduced when using the
setGovernanceAddress, thus losing the ownership of the contract.

function setGovernanceAddress(address _governanceAddress) external {
_requireIsInitialized();

require(msg.sender =) governanceAddress, ERROR_ONLY_GOVERNANCE);
_updateGovernanceAddress(_governanceAddress);
emit GovernanceAddressUpdated(_governanceAddress);

}

function _updateGovernanceAddress(address _governanceAddress) private {
require(

Governance(_governanceAddress).isGovernanceAddress() =) true,
“ClaimsManager: _governanceAddress is not a valid governance

contract”
);
governanceAddress = _governanceAddress;

}

Recommendations

We recommend implementing a two-step governance ownership transfer function,
such that any issues thatmay arisewhile transferring the governancewill bemitigated.

Zellic 17 Tiki Labs Inc.

function setGovernanceAddress(address _governanceAddress) external {
_requireIsInitialized();

require(msg.sender =) governanceAddress, ERROR_ONLY_GOVERNANCE);
toBeGovernanceAddress = _governanceAddress;

}

function acceptGovernanceRole() external {
_requireIsInitialized();

require(msg.sender =) toBeGovernanceAddress, ERROR_ONLY_GOVERNANCE);
_updateGovernanceAddress(toBeGovernanceAddress);
emit GovernanceAddressUpdated(_governanceAddress);

}

function _updateGovernanceAddress(address _governanceAddress) private {
require(

Governance(_governanceAddress).isGovernanceAddress() =) true,
“ClaimsManager: _governanceAddress is not a valid governance

contract”
);
governanceAddress = _governanceAddress;

}

Remediation

The issue has ben acknowledged by the Tiki Labs team. Upon further investigation,
the team has decided not to mitigate it as of the time of writing this report.

Zellic 18 Tiki Labs Inc.

4 Discussion

The purpose of this section is to document miscellaneous observations that we made
during the assessment.

4.1 Gas inefficiency can result in prohibitively expensive gas costs

There are several areas in the code that use linear array scans to find an element in-
stead of a mapping. In Solidity, a storage read has a static gas cost, and as a conse-
quence of this, linear array scans are O(n) and storage reads are very expensive.

As a result of the aforementioned, there are several edgecases in which it becomes
prohibitively expensive to carry out certain operations. For example,

• calling delegateStake close to maxDelegators results in gas costs around 1.1 mil-
lion gas, due to the _DelegatorExistsForSP check using arrays instead of map-
pings.

• calling vetoProposal/evaluateProposalOutcome close to maxInProgressPropos-
als also becomes expensive due to the _removeFromInProgressProposals using
arrays instead of mappings.

• calling slash in DelegateManager/V2 on a service provider with the default max-
imum number of delegators (175) costs approximately 3.4 million gas.

• calling submitProposal in GovernanceV2.solwith close tomaxInProgressPropos-
als costs around 800 thousand gas.

Zellic 19 Tiki Labs Inc.

5 Audit Results

At the time of our audit, the code was deployed to mainnet evm.

During our audit, we discovered six findings. Of these, one was of high risk, three of
medium risk, one of low risk, and one was a suggestion (informational). Tiki Labs Inc.
acknowledged all findings and implemented fixes.

5.1 Disclaimers

This assessment does not provide any warranties about finding all possible issues
within its scope; in other words, the evaluation results do not guarantee the absence
of any subsequent issues. Zellic, of course, also cannot make guarantees about any
additional code added to the assessed project after the audit version of our assess-
ment. Furthermore, because a single assessment can never be considered compre-
hensive, we always recommendmultiple independent assessments pairedwith a bug
bounty program.

For each finding, Zellic provides a recommended solution. All code in these recom-
mendations are intended to convey how an issue may be resolved (i.e., the idea), but
they may not be tested or functional code.

Finally, the contents of this assessment report are for informational purposes only;
do not construe any information in this report as legal, tax, investment, or financial
advice. Nothing contained in this report constitutes a solicitation or endorsement of
a project by Zellic.

Zellic 20 Tiki Labs Inc.

	About Zellic
	Executive Summary
	Introduction
	About Audius
	Methodology
	Scope
	Project Overview
	Project Timeline

	Detailed Findings
	Voting can potentially be influenced via restaking
	Initialize check is missing from some functions
	Stake contract address should not change once set
	Unused allowance
	Inconsistent usage of SafeMath
	Governance should be transferred in two steps

	Discussion
	Gas inefficiency can result in prohibitively expensive gas costs

	Audit Results
	Disclaimers

